

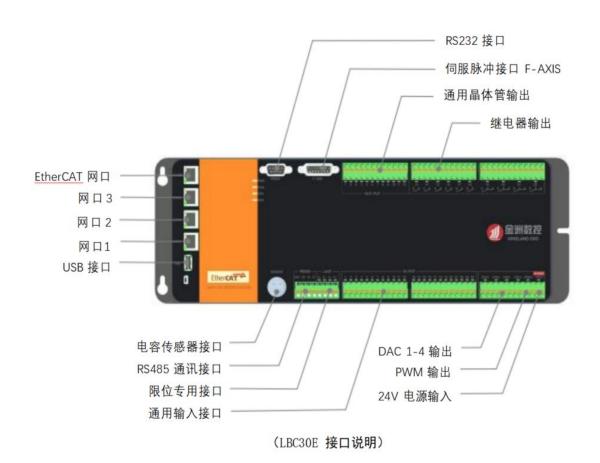
拉料系统装机文档版本更新记录

更新日期	最新版本号	更新日志	备注
2024-11-19	V1.0.0	拉料系统装机手册	

金洲数控拉料系统装机手册

目录

第一章 产品概述3
第二章 接线说明3
2.1. 接口概述3
2.2. 接口说明4
2.3. 接线说明5
第三章 安装说明6
3.1. 安装前准备6
3.1.1. 主机推荐配置6
3.1.2. 更改主机 IP 地址6
3.2. 安装软件7
3.3. 连接从站8
3.4. 扫描从站8
第四章 机床调试8
4.1. 配置参数8
4.1.1. 配置轴参数8
4.1.2. 配置激光器参数9
4.1.3. 配置 IO 参数9
4.1.4. 配置卡盘参数9
4.1.5. 配置调高器参数10
4.1.6. 配置焦点参数10
4.1.7. 全局参数配置10
4.1.8. 点动参数配置11
4.1.9. 调高参数配置12
4.1.10. 点射参数配置13
4.2. 轴调试14
4.2.1. 限位调试(注意:此步骤电机应全程处于不上使能状态!)14
4.2.2. 回原点14
4.3. IO 调试15
4.4. 标定16
4.5. 切割16
第五章 机型功能17
5.1. 自动拉料17
5.1.1. 单卡盘自动拉料17
第六章 注意事项20
6.1. 接线注意事项20
6.1.1. 拖链线布线规范20
6.1.2. 机床布线规范21


第一章 产品概述

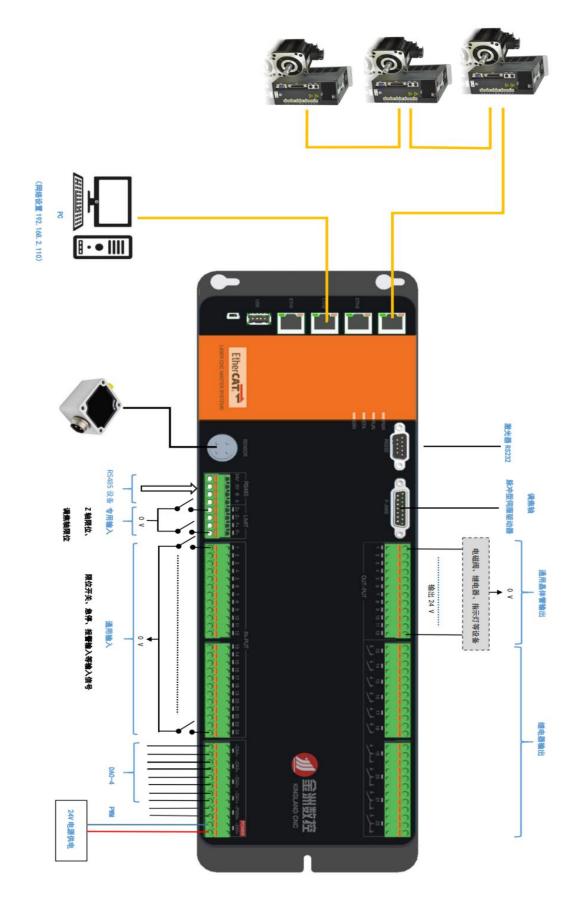
LBC30E 是一套针对金属管材光纤激光切割机的精密加工运动控制系统。

本产品适用于低功率激光切割,EtherCAT 总线伺服控制机床,搭载自主研发的加工软件 TDCUT 和套料软件 TDFIT,能实现多种管型和任意形状的切割。拥有图纸处理,路径规划,轨迹工艺,加工工艺,速度规划等丰富的功能。具有随动支撑,卡盘避让,拉送料切割、全自动上下料 PLC 等特色功能,可适用于小管型快速切割,循环加工的场景。

第二章 接线说明

2.1.接口概述

2.2.接口说明


- 1. 伺服控制接口: 本系统包含 1 个伺服控制接口, F-AXIS 轴连接自动调焦轴;
- 2. 网络 1 接口: IO 板卡拓展接口,可通过此网口连接本公司提供的拓展 IO 模块,进行拓展 IO 数量;
- 3. 网络 2 接口: 通过网口 0 连接到 PC 端,用于软件的通讯和控制;

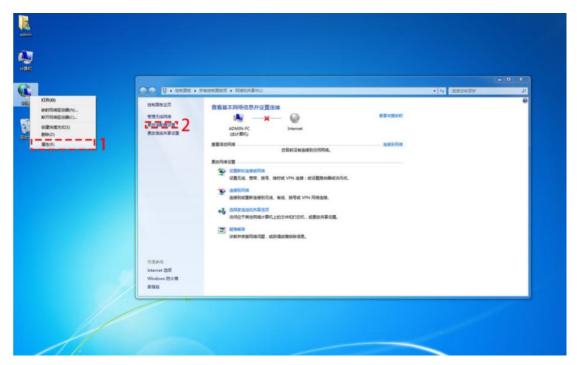
注意:

- (1) 调焦轴连接的伺服请配置为位置环数字脉冲控制;轴口中伺服使能信号输出 默认为低电平有效;
- (2) 伺服报警输入信号输出默认为低电平有效; (可通过加工软件设置常开和常 闭选项)
- (3) 开关量输入默认输入低电平有效; (可通过加工软件配置功能);
- (4) PWM 输出出厂默认高电平为 24V (若需要 5V 电平,请联系厂家);
- (5) 限位开关输入默认输入低电平有效,其中 Z+表示正限位,Z-表示负限位 。以此类推。

2.3.接线说明

第 5 页 共 **22** 页

第三章 安装说明


3.1. 安装前准备

3.1.1. 主机推荐配置

CPU	Inter i5 1.6GHz (4 核)及以上		
内存	8GB 及以上		
硬盘	120GB 及以上		
网卡	2X10/2X100/2x1000 千兆网卡		
USB	4XUSB2.0/4XUSB3.0		
显示	支持 HDMI/VGA		
系统	正版 Windows7(64 位 旗舰版)/ 正版 Windows10		
	(64 位 专业版)		

3.1.2. 更改主机 IP 地址

 在桌面找到"网络"快捷方式,点击右键选择"属性",在弹出界面中选择 "更改适配器设置",如下图所示。

图 3.1.1 更改适配器

2. 在弹出的窗口中,有未识别的网络标识的是已连接网线的网口,此网口即是我们需要更改 IP 地址的网口,如下图所示。

图 3.1.2 选择网络适配器

3. 右击此网口,选择"属性",在弹出的界面中选 "Internet 协议版本 4 (TCP/IPv4)",之后点击"属性",在属性界面中选择"使用下面的 IP 地址",填入表格中的 IP 地址和子网掩码,点击"确定"完成更改。

IP 地址	192. 168. 2. 110
子网掩码	255. 255. 255. 0

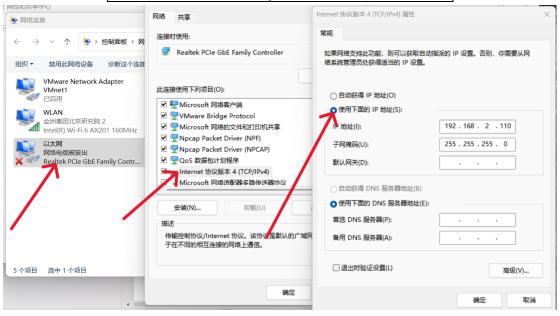


图 3.1.3 更改 IP 地址

3.2. 安装软件

- 1. 从官网下载最新版本的软件安装包。
- 2. 双击安装包,按提示一步步完成安装。

3. 联系厂家对软件进行授权。

3.3. 连接从站

用 CAT5E 及以上标准网线连接从站, 接线示意图如 1.2 节所示。

3.4.扫描从站

- 1. 打开 TDCut 软件,等待提示"控制器上线"。
- 2. 点击"配置工具",默认密码为空,打开后点击"总线扫描"的"开始扫描"。
- 3. 扫描结束后,根据从站连接顺序设置对应的功能轴,如下图所示。

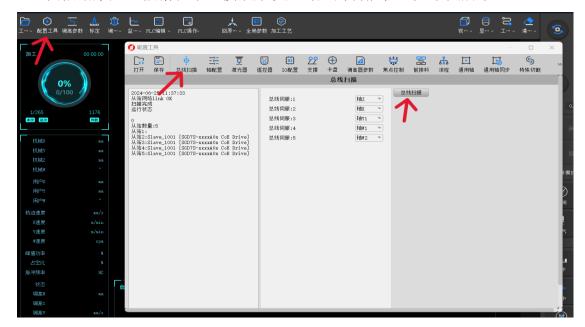


图 3.4.1 总线扫描

第四章 机床调试

4.1.配置参数

4.1.1. 配置轴参数

根据机床实际情况设置轴基本参数和回原点参数。

4.1.2. 配置激光器参数

根据实际使用的激光器的品牌和控制方式设置。

4.1.3. 配置 IO 参数

4.1.3.1. IO 输入信号

- 1. 配置"紧急急停"、"激光器报警"、"冷水机报警",如果有其他报警信号则配置"通用输入报警",然后在自定义名称列填入名称即可。
- 2. 配置"卡盘夹紧松开到位"信号,配置对应卡盘的"夹紧松开到位"信号,如果一个卡盘同时有多个到位信号,可以配置"夹紧松开到位辅助信号"。
- 3. 配置"支撑升起落下到位"信号。
- 4. 配置"W轴原点信号"。
- 5. 配置通用轴正负限位信号。

4.1.3.2. IO 输出信号

- 1. 配置"激光"、"光闸"输出端口。
- 2. 配置"卡盘夹紧松开",如果卡盘是单IO控制,只配置"卡盘夹紧"即可。
- 3. 配置"氧气"、"氮气",如果使用的是空气,配置"氮气"即可。
- 4. 配置报警灯"红灯"、"绿灯"、"黄灯"。
- 5. 配置抱闸信号,如果伺服抱闸是外部控制,则配置对应轴的抱闸信号。

4.1.4. 配置卡盘参数

- 1. 根据实际情况设置"卡盘类型"及"使用卡盘"。
- 2. 设置卡盘"夹紧到位时间"、"松开到位时间"。
- 3. 如果是中卡是气动卡盘并且尾卡可以穿过中卡,设置中卡的"卡盘松开位置",根据实际的机械坐标设置。

注意:填写 Y 轴机械坐标前,确保 Y 轴已经过原点,回原点详见错误!未找到引

用源。。

4.1.5. 配置调高器参数

- 1. 设置轴基本参数
- 2. "最大速度",根据伺服最大转速及每转对应丝杆螺距计算得出,"最大加速度"根据实际机床性能填写。
- 3. "回原点方向",设置正向。
- 4. "伺服方向",默认正向,配置好之后如果 Z 轴向上点动,实际切割头向下运动,则"伺服方向"取反。
- 5. "编码器反向",默认不设置,如果 Z 轴向下点动时,Z 轴机械坐标值增大并且切割头向下运动,则设置"编码器反向"。

4.1.6. 配置焦点参数

- 1. 设置调焦轴控制方式
- 2. 设置基本参数
- 3. 如果是轴口控制,"点动速度"和"定位速度"建议设置 100,"最大加速度"建议 1000-3000。
- 4. 如果是轴口控制, "回原点方向"默认负向, "回原点粗定位速度"建议 2, "回原点精定位速度"建议 0.5, "回退距离": 调焦轴从原点位置到 0 位置的距离。

4.1.7. 全局参数配置

在 TDCut 菜单栏中打开"全局参数",使用默认参数即可,如下图所示。

图 4.1.1 全局参数

4.1.8. 点动参数配置

打开点动参数设置界面,使用默认参数即可,如下图所示。如果已经设置了各轴正确的行程,可以设置"启用软限位保护"。

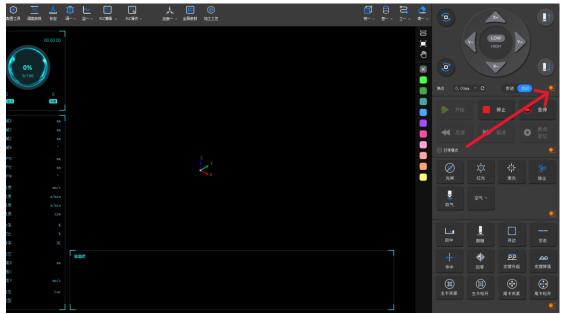


图 4.1.2 点动参数按钮

图 4.1.3 点动参数

4.1.9. 调高参数配置

在 TDCut 菜单栏中打开"调高参数"。

- 1. 调高器其它参数使用默认值即可,如下图所示。
- 2. 如果使用的是总线伺服,忽略以下几项。
- 3. 伺服品牌根据实际设置,施耐德、汇川、德力西、禾川等设置"安川/台达", 富士等设置"松下/三菱"。
- 4. 自动标定零点电压,首先点动 Z 轴,让切割头移动到 Z 轴行程中间位置,点击"自动标定零点电压",等待标定完成。
- 5. 自动调整增益, Z轴点动低速向下或者向上, 如果速度不是 20mm/s, 并且相

差较大,移动切割头到 Z 轴行程中间位置,选中"自动增益",点击"自动调整速度增益"。

图 4.1.4 调高器设置

4.1.10. 点射参数配置

打开点射参数配置界面,设置默认值即可,如激光器功率较小可适当调大。

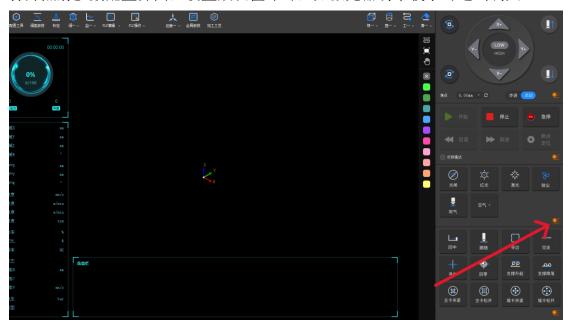


图 4.1.5 点射参数按钮

图 4.1.6 点射参数

4.2. 轴调试

4.2.1. 限位调试(注意: 此步骤电机应全程处于不上使能状态!)

- 1. 依次触发各轴限位开关,并观察报警栏有无该限位报警提示。
- 2. 依次检查急停等其他输入信号,可在菜单栏"监控中"打开"I0监控"进行观察。

4.2.2. 回原点

- 1. 电机上使能。
- 2. 在菜单栏"调试"中点击"轴调试",打开轴调试窗口。
- 3. 在轴调试步进界面中设置各轴的"步进速度"、"步进距离",建议先使用较小参数测试,观察各轴移动的方向和距离是否与设置一致。
- 4. 步进测试完成后打开"轴调试"中的"回原点"窗口。
- 5. 依次测试各轴的回原点功能。

图 4.2.1 轴调试

4.3.IO 调试

前面已经通过限位调试完成了 IO 输入调试,在菜单栏打开"监控"中的"IO 监控",继续依次测试 IO 输出功能。

4.4.标定

- 1. 点击菜单栏"回原点"中"全部回原点"。
- 2. 等待回原点动作完成后,夹持一根标准方管,尺寸不宜过大以免标定过程中超出 X 轴限位。
- 3. 首先点击"Z轴点动向下",让切割头停在距离管面 1cm 以内的位置,点击"标定 Z轴容值",等待标定完成。如提示未检测到容值变化,可适当再降低 Z轴位置据管面 5mm 左右再次标定。
- 4. 移动 W 轴,让管面基本水平,打开菜单栏"标定"窗口,输入实际的"管宽度"、"管高度",点击"单面校平"。
- 5. 校平完成后点击"标定 B 轴中心",标定完成后查看"X 偏差"和"Z 轴偏差",如果差值过大需检查机械结构是否存在问题。

图 4.4.1 标定

4.5.切割

- 1. 完成以上所有步骤后,可以通过 TDFit 软件进行绘图,详见 TDFit 说明书。
- 2. 通过 TDCut 打开绘制好的模型文件, 打开菜单栏"加工工艺"对工艺参数进行

设置。

3. 设置完成后即可进行切割。

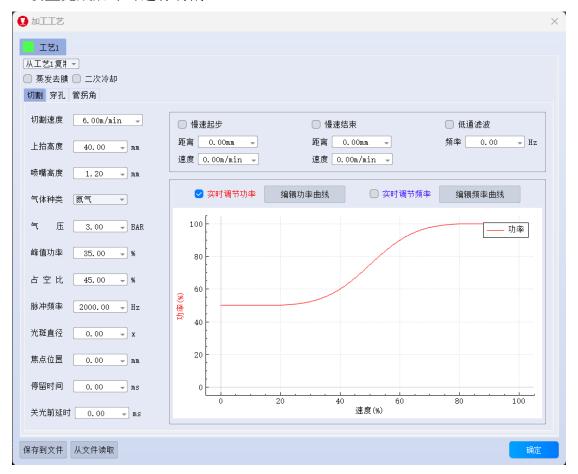


图 4.5.1 加工工艺

第五章 机型功能

5.1. 自动拉料

自动送料可用于在加工轨迹前,判断轨迹是否在加工范围内,进行送料。自动送料功能可以解决短行程切管机加工长管材的问题。

5.1.1. 单卡盘自动拉料

首先,进入配置工具,配置相关参数,参考4.1。

1. 进入"轴配置"界面,设置轴参数。根据行程确定正负行程,回原点方向选择 "正向",即为靠近中卡的方向。

2. 保存并关闭配置工具, 打开加工软件菜单栏"调试"下的"自动送料"。

3. 配置自动送料参数

	1 601 12		
加工时自动送料		选择开启,加工中会对当前加工模型执行自动	
		送料。关闭则在加工中不进行自动送料。	
送料行程		单卡拉料机型中,则为拉料行程。拉料过程中	
		的 Y 的坐标范围。如设置 500,则切割头只能	
		在0到-500的范围区间运动。	
自动送料判	加工轨迹前判断	下条轨迹超过送料行程则进行送料。	
断	送料	保证加工一条轨迹过程中不送料,送料次数会	
		更少,但同一个零件里面可能会多次送料,一	
		般用于长零件加工。	
	加工零件前判断	下个加工零件超过送料行程则进行送料;会保	
	送料	 证加工一个零件过程中不送料,送料次数可能	
		会更多,但零件内的精度会有更高的保证,一	
		般用于短零件加工。	
	单次拉单零件	一次只拉一个零件,会保证加工一个零件过程	
		中不送料,相对加工零件前判断送料,会减少	
		零件前伸的长度,加工精度相对会进一步提	
		升,只用于短零件加工。	
自动送料前 PLC		选择对应自定义过程可以满足自动送料过程	
		中各种机械动作;触发自动送料时序:自动送	
自动送料后F	PLC	料前 PLC——自动送料动作——自动送料后	
		PLC	
拉料后自动导	字中	在执行完拉料动作后,在下条轨迹切割前进行	
		一次自动寻中。	
管材夹持设备	B夹紧 PLC	在加工过程中轴旋转或加工法向量不相同的	
答材立共沿々	ス松开 DIC	图形时执行松开操作,加工法向量相同的图形	
管材夹持设备松开 PLC		时执行夹紧操作	
开机时夹持设备自动松开		软件启动后会自动执行管材夹持设备夹紧	
停止暂停时夹持设备自动松开		按下停止、暂停按钮,会自动执行管材夹持设	
		备松开	
-		•	

松开到位时间	夹持设备松开到位时间	
夹紧到位时间	夹持设备夹到位时间	
启用按面排序	针对拉料行程切割行程中所有轨迹进行按面	
	排序切割	
切割头到对中装置距离	切割头到"滚轮对中装置(伺服或气缸)可稳	
	定夹持管材"的距离	
自动送料机械补偿	用于补偿单次拉料的固定机械误差	
自动送料速度/加速度	用于控制拉料时 Y 轴的速度	
夹爪相对切割头长度	切割头到拉料夹爪的相对距离	

第六章 注意事项

6.1.接线注意事项

6.1.1. 拖链线布线规范

- 1. 电缆在封闭空间内安装时不允许发生扭曲,安装过程中的扭曲可能导致芯线 绞合过早损坏。这种影响在电缆运行中逐渐加强,产生退扭现象,最终导致 芯线断裂而发生故障。
- 2. 对于垂直悬挂的拖链,将垂直支架中必须留有更多的自由空间,因为电缆在运行过程中会拉长。经过短时间运行后,必须检查电缆是否沿中心区域运行,必要时对它们进行调整。
- 3. 对于滑动拖链,我们建议只需将电缆固定在移动点上。在固定点上需要设置 一个小型的电缆保护区。(参考拖链供应商的装配说明书)
- 4. 请确保电缆在所需的弯曲半径下沿中心区域运动。不要对电缆施加张力(不要拉的 太紧),否则拖链内部的摩擦会导致电缆护套磨损;不要让电缆在拖链内过于松垮,否则也容易导致电缆与拖链内壁的磨损,或者与其他线缆发生缠连。
- 5. 如果电缆运行不顺畅,可检查是否在运行中沿纵轴线方向发生了扭曲,电缆

应该会 在某一个固定点慢慢旋转,直至其运转自如。

6. 鉴于电缆和拖链的绝对尺寸,它们的长度变化特性差异相当大。在最初运行的几小时中,电缆就发生了自然拉长。对于拖链来说,需要经过许多个小时的运行才会发生这种现象。如此大的差异可以通过定期检查电缆的安装位置来解决。我们建议定期进行检查,在运行的第一年,每三个月进行一次,之后可在每次维护时进行。内容包括检查电缆是否在应有的弯曲半径内完全自由运动,必要时进行调整。

6.1.2. 机床布线规范

6.1.2.1. 电源接线规范

1. 强弱电严格分离。电源线根据功率大小选取合适的线径,附表为线缆直径、功率对照表:

电线/电缆规	线缆截面	25℃铜线载流量	单相 220v 负	三相 380v 负
格 (mm^2)	(mm^2)	(A)	载功率 (W)	载功率 (W)
1.5	1. 38	15	3300	9476.8
2.5	1. 38	25	5500	13163. 2
4	2. 25	32	7040	16848.8
6	2.85	45	9900	23693.6
10	7 * 1. 35	60	13200	31591.2
16	7*1.7	80	17600	42121.6
25	7* 2. 14	110	24200	57917.6

- 2. 强电加短路保护器、滤波器等辅助器件。
- 3. 弱电: 电源正负极接线颜色区分,例如:红色的线接正极,蓝色的线接负极,
- 4. 干扰比较大的负载(如伺服、电磁阀)与控制器分开供电。

6.1.2.2. 信号线接线规范

1. 信号线接线颜色: 如黑色。

- 2. 信号线根据功率大小选用匹配的线材。
- 3. 推荐使用 DC 24V 电磁阀。电磁阀两端加吸收电路,即,在电磁阀两端并联一个续流二极管(注意方向、耐流值、耐压值)。
- 4. 推荐数字量信号 (PWM) 屏蔽层采用双端接地,模拟量信号 (DA) 屏蔽层单端接地。 单端接地能够避免屏蔽层上的低频电流噪声; 双端接地有效的消除高频干扰, 如果 传输线缆很长, 建议多点接地, 保证屏蔽层等电位。
- 5. 放大器连接的切割头到机床外壳阻值不大于 1Ω , 到电气柜接地点阻值不大于 6Ω 。

6.1.2.3. 地线接线规范

- 1. 地线采用标准黄绿双色线。
- 2. 激光切割机床里有一些高频率的信号(PWM,脉冲,编码器,电容信号等),建议采用多点接地。
- 3. 机床用镀锌接地螺钉,并用专门的接地线接地。接地的金属主体与主接地点之间的 电阻不能大于 0.1Ω 。

6.1.2.4. 其他接线规范

- 1. 每根线材标识、标记清晰准确。
- 2. 线与线之间平行排列,不准交叉,线束、线管的布置要平直。
- 3. 选用我司的配线时,根据布局空间选用适当型号的线材,不要堆积盘旋。 所有接线必须牢靠,不能松动,防止产生打火现象。
- 4. 布线避免形成环路,防止天线效应。由信号源---传输线---负载组成的电流环路,相当于磁场天线。